Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Journal of the Korean Radiological Society ; : 958-964, 2022.
Article in English | WPRIM | ID: wpr-938377

ABSTRACT

Pulmonary epithelioid hemangioendothelioma (PEH) is a rare vascular tumor of borderline or low-grade malignancy, and its prognosis is unpredictable. Herein, we describe the case of a 47-year-old asymptomatic female with a diagnosis of multinodular PEH. During a 7-year followup, the nodules with large size and high 18F-fluorodeoxyglucose uptake in the initial study showed progression with increasing sizes; however, most small nodules (size < 1 cm) demonstrated spontaneous regression with peripheral rim or nodular calcification. The patient underwent surgical resection for an enlarged nodule. Of note, it is unusual for an individual to have mixed progression and regression concomitantly, which may be helpful in predicting the prognosis.

2.
Korean Circulation Journal ; : 866-876, 2019.
Article in English | WPRIM | ID: wpr-917350

ABSTRACT

BACKGROUND AND OBJECTIVES@#Elevated endothelin (ET)-1 level is strongly correlated with the pathogenesis of pulmonary arterial hypertension (PAH). Expression level of nicotinamide adenine dinucleotide phosphate oxidase (NOX) 4 is increased in the PAH patients. Ambrisentan, a selective endothelin receptor A (ERA) antagonist, is widely used in PAH therapy. The current study was undertaken to evaluate the effects of ambrisentan treatment in the monocrotaline (MCT)-induced PAH rat model.@*METHODS@#Rats were categorized into control group (C), monocrotaline group (M) and ambrisentan group (Am). The M and Am were subcutaneously injected 60 mg/kg MCT at day 0, and in Am, ambrisentan was orally administered the day after MCT injection for 4 weeks. The right ventricle (RV) pressure was measured and pathological changes of the lung tissues were observed by Victoria blue staining. Protein expressions of ET-1, ERA, endothelial nitric oxide synthase (eNOS) and NOX4 were confirmed by western blot analysis.@*RESULTS@#Ambrisentan treatment resulted in a recovery of the body weight and RV/left ventricle+septum at week 4. The RV pressure was lowered at weeks 2 and 4 after ambrisentan administration. Medial wall thickening of pulmonary arterioles and the number of intra-acinar arteries were also attenuated by ambrisentan at week 4. Protein expression levels of ET-1 and eNOS were recovered at weeks 2 and 4, and ERA levels recovered at week 4.@*CONCLUSIONS@#Ambrisentan administration resulted in the recovery of ET-1, ERA and eNOS protein expression levels in the PAH model. However, the expression level of NOX4 remained unaffected after ambrisentan treatment.

3.
Korean Journal of Pediatrics ; : 95-101, 2019.
Article in English | WPRIM | ID: wpr-760188

ABSTRACT

PURPOSE: Increased apoptosis was recently found in the hypertrophied left ventricle of spontaneously hypertensive rats (SHRs). Although the available evidence suggests that apoptosis can be induced in cardiac cells by various insults including pressure overload, cardiac apoptosis appears to result from an exaggerated local production of angiotensin in adult SHRs. Altered expressions of Bcl associated X (Bax), Bcl-2, chemokine receptor (CCR)-2, monocyte chemoattractant protein (MCP)-1, transforming growth factor (TGF)-β1, phosphorylated extracellular signal-regulated kinases (PERK), and connexin 43 proteins, and kallikrein mRNA were investigated to explore the effects of losartan on the SHR model. METHODS: Twelve-week-old male rats were grouped as follows: control (C), SHR (hypertension: H), and losartan (L; SHRs were treated with losartan [10 mg/kg/day] for 5 weeks). Western blot and reverse transcription polymerase chain reaction assays were performed. RESULTS: Expression of Bax, CCR-2, MCP-1, TGF-β1, PERK, and connexin 43 proteins, and kallikrein mRNA was significantly increased in the H group compared to that in the C group at weeks 3 and 5. Expression of Bax, CCR-2, MCP-1, TGF-β1, and connexin 43 proteins and kallikrein mRNA was significantly decreased after losartan treatment at week 5. PERK protein expression was significantly decreased after losartan treatment at weeks 3 and 5. Bcl-2 protein expression was significantly decreased in the H group compared to that in the C group at weeks 3 and 5. CONCLUSION: Losartan treatment reduced expression of Bax, CCR-2, MCP-1, TGF-β1, PERK, and connexin 43 proteins, and kallikrein mRNA in SHRs, along with decreased inflammation and apoptosis.


Subject(s)
Adult , Animals , Humans , Male , Rats , Angiotensins , Apoptosis , Blotting, Western , Connexin 43 , Extracellular Signal-Regulated MAP Kinases , Gene Expression , Heart Ventricles , Inflammation , Kallikreins , Losartan , Monocytes , Polymerase Chain Reaction , Rats, Inbred SHR , Reverse Transcription , RNA, Messenger , Transforming Growth Factors
4.
Korean Circulation Journal ; : 866-876, 2019.
Article in English | WPRIM | ID: wpr-759469

ABSTRACT

BACKGROUND AND OBJECTIVES: Elevated endothelin (ET)-1 level is strongly correlated with the pathogenesis of pulmonary arterial hypertension (PAH). Expression level of nicotinamide adenine dinucleotide phosphate oxidase (NOX) 4 is increased in the PAH patients. Ambrisentan, a selective endothelin receptor A (ERA) antagonist, is widely used in PAH therapy. The current study was undertaken to evaluate the effects of ambrisentan treatment in the monocrotaline (MCT)-induced PAH rat model. METHODS: Rats were categorized into control group (C), monocrotaline group (M) and ambrisentan group (Am). The M and Am were subcutaneously injected 60 mg/kg MCT at day 0, and in Am, ambrisentan was orally administered the day after MCT injection for 4 weeks. The right ventricle (RV) pressure was measured and pathological changes of the lung tissues were observed by Victoria blue staining. Protein expressions of ET-1, ERA, endothelial nitric oxide synthase (eNOS) and NOX4 were confirmed by western blot analysis. RESULTS: Ambrisentan treatment resulted in a recovery of the body weight and RV/left ventricle+septum at week 4. The RV pressure was lowered at weeks 2 and 4 after ambrisentan administration. Medial wall thickening of pulmonary arterioles and the number of intra-acinar arteries were also attenuated by ambrisentan at week 4. Protein expression levels of ET-1 and eNOS were recovered at weeks 2 and 4, and ERA levels recovered at week 4. CONCLUSIONS: Ambrisentan administration resulted in the recovery of ET-1, ERA and eNOS protein expression levels in the PAH model. However, the expression level of NOX4 remained unaffected after ambrisentan treatment.


Subject(s)
Animals , Humans , Rats , Arteries , Arterioles , Blotting, Western , Body Weight , Endothelin Receptor Antagonists , Endothelins , Gene Expression , Heart Ventricles , Hypertension , Hypertension, Pulmonary , Lung , Models, Animal , Monocrotaline , NADP , NADPH Oxidases , Nitric Oxide Synthase Type III , Oxidoreductases , Receptors, Endothelin , Victoria
5.
The Ewha Medical Journal ; : 39-45, 2019.
Article in English | WPRIM | ID: wpr-761401

ABSTRACT

OBJECTIVES: Elevated pulmonary pressure and right ventricular (RV) dysfunction are the hallmarks of pulmonary vascular disease in animal models and human patients with pulmonary arterial hypertension (PAH). Monocrotaline models of PAH are widely used to study the pathophysiology of PAH. The purpose of this study was to evaluate the severity of PAH rat model by tissue Doppler imaging (TDI). METHODS: PAH was induced in Sprague-Dawley rats by monocrotaline (M) group. The peak systolic (s'), early diastolic (e'), and late diastolic myocardial velocities (a') were measured using TDI at basal segments. Tricuspid annular plane systolic excursion (TAPSE) was measured in the 4-chamber view. Velocity of a tricuspid regurgitation (TR) jet was measured to estimate the pulmonary artery pressure to assess the severity of PAH. RESULTS: Decrease in the RV shortening fraction and ejection fraction were observed in the M group compared with the control (C) group. RV e' velocity and s' velocity were significantly lower in the M group compared with the C group. The TAPSE was significantly lower in the M group compared with the C group (1.26±0.22 mm vs. 2.83±0.34 mm). The TR velocity was significantly higher in the M group compared with the C group (4.48±0.34 m/sec vs. 1.23±0.02 m/sec). CONCLUSION: TAPSE is an easily obtainable, widely recognized and clinically useful echocardiographic parameter of global RV function in the PAH rat model. We recommend that TDI would be a helpful diagnostic tool to evaluate the RV function in PAH rat model.


Subject(s)
Animals , Humans , Rats , Echocardiography , Hypertension , Hypertension, Pulmonary , Models, Animal , Monocrotaline , Pulmonary Artery , Rats, Sprague-Dawley , Tricuspid Valve Insufficiency , Vascular Diseases , Ventricular Dysfunction, Right , Ventricular Function, Right
6.
The Ewha Medical Journal ; : 53-62, 2018.
Article in English | WPRIM | ID: wpr-716071

ABSTRACT

OBJECTIVES: Simvastatin has been reported to attenuate the development of pulmonary hypertension through increased apoptosis as well as reduced proliferation of smooth muscle cells in obstructive vascular lesions. Microarray experiment can accomplish many genetic tests in parallel. The purpose of this study is to evaluate altered expressions of gene in rat hearts with monocrotaline (MCT)-induced pulmonary arterial hypertension after simvastatin treatment. METHODS: Six-week-old male rats were grouped as follows: control group (C group, saline injection), M group (MCT 60 mg/kg), and S group (MCT 60 mg/kg plus 10 mg/kg/day simvastatin by gavage during 28 days). Body weight, right ventricular pressure and right ventricular/left ventricle+septum ratio in each group were measured. The rats were sacrificed after 28 days. Total RNA was extracted from the rat heart tissue and microarray analysis was performed. RESULTS: Administration of simvastatin significantly inhibited the progression of right ventricular hypertrophy at day 28 in the S group than in the M group. Compared with the C group, MCT was associated with a significant difference in expression of genes related to biosynthesis and with the regulation of heart contraction rate. Simvastatin treatment resulted in a significantly changed expression of genes about the regulation of progression through cell cycle and system development compared to the M group. The expressions of nitric oxide synthase and brain natriuretic peptide were significantly decreased after simvastatin treatment. CONCLUSION: Administration of simvastatin exerted inhibitory effects on right ventricular hypertrophy during the development of MCT-induced pulmonary arterial hypertension in rats. Simvastatin changes the expression of genes associated with various functions.


Subject(s)
Animals , Humans , Male , Rats , Apoptosis , Body Weight , Cell Cycle , Gene Expression , Heart , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypertension , Hypertension, Pulmonary , Hypertrophy, Right Ventricular , Microarray Analysis , Monocrotaline , Myocytes, Smooth Muscle , Natriuretic Peptide, Brain , Nitric Oxide Synthase , RNA , Simvastatin , Ventricular Pressure
7.
Korean Journal of Pediatrics ; : 271-278, 2018.
Article in English | WPRIM | ID: wpr-716768

ABSTRACT

PURPOSE: Abnormal potassium channels expression affects vessel function, including vascular tone and proliferation rate. Diverse potassium channels, including voltage-gated potassium (Kv) channels, are involved in pathological changes of pulmonary arterial hypertension (PAH). Since the role of the Kv1.7 channel in PAH has not been previously studied, we investigated whether Kv1.7 channel expression changes in the lung tissue of a monocrotaline (MCT)-induced PAH rat model and whether this change is influenced by the endothelin (ET)-1 and reactive oxygen species (ROS) pathways. METHODS: Rats were separated into 2 groups: the control (C) group and the MCT (M) group (60 mg/kg MCT). A hemodynamic study was performed by catheterization into the external jugular vein to estimate the right ventricular pressure (RVP), and pathological changes in the lung tissue were investigated. Changes in protein and mRNA levels were confirmed by western blot and polymerase chain reaction analysis, respectively. RESULTS: MCT caused increased RVP, medial wall thickening of the pulmonary arterioles, and increased expression level of ET-1, ET receptor A, and NADPH oxidase (NOX) 4 proteins. Decreased Kv1.7 channel expression was detected in the lung tissue. Inward-rectifier channel 6.1 expression in the lung tissue also increased. We confirmed that ET-1 increased NOX4 level and decreased glutathione peroxidase-1 level in pulmonary artery smooth muscle cells (PASMCs). ET-1 increased ROS level in PASMCs. CONCLUSION: Decreased Kv1.7 channel expression might be caused by the ET-1 and ROS pathways and contributes to MCT-induced PAH.


Subject(s)
Animals , Rats , Arterioles , Blotting, Western , Catheterization , Catheters , Endothelins , Glutathione , Hemodynamics , Hypertension , Jugular Veins , Lung , Models, Animal , Monocrotaline , Myocytes, Smooth Muscle , NADPH Oxidases , Polymerase Chain Reaction , Potassium , Potassium Channels , Potassium Channels, Voltage-Gated , Pulmonary Artery , Reactive Oxygen Species , RNA, Messenger , Ventricular Pressure
8.
Korean Journal of Pediatrics ; : 365-372, 2017.
Article in English | WPRIM | ID: wpr-72672

ABSTRACT

PURPOSE: The mechanism for the pathogenesis of adriamycin (ADR)-induced cardiomyopathy is not yet known. Different hypotheses include the production of free radicals, an interaction between ADR and nuclear components, and a disruption in cardiac-specific gene expression. Apoptosis has also been proposed as being involved in cardiac dysfunction. The purpose of this study was to determine if apoptosis might play a role in ADR-induced cardiomyopathy. METHODS: Male Sprague-Dawley rats were separated into 2 groups: the control group (C group) and the experimental group (ADR 5 mg/wk for 3 weeks through intraperitoneal injections; A group). Echocardiographic images were obtained at week 3. Changes in caspase-3, B-cell leukemia/lymphoma (Bcl)-2, Bcl-2-associated X (Bax), interleukin (IL)-6, tumor necrosis factor-α, brain natriuretic peptide (BNP), troponin I, collagen 1, and collagen 3 protein expression from the left ventricle tissues of C and A group rats were determined by Western blot. RESULTS: Ascites and heart failure as well as left ventricular hypertrophy were noted in the A group. Ejection fraction and shortening fraction were significantly lower in the A group by echocardiography. The expression of caspase-3, Bax, IL-6, BNP, collagen 1, and collagen 3 were significantly higher in the A group as compared with the C group. Protein expression of Bcl-2 decreased significantly in the A group compared with the C group. CONCLUSION: ADR induced an upregulation of caspase-3, Bax, IL-6, and collagen, as well as a depression in Bcl-2. Thus, apoptosis and fibrosis may play an important role in ADR-induced cardiomyopathy.


Subject(s)
Animals , Humans , Male , Rats , Apoptosis , Ascites , B-Lymphocytes , Blotting, Western , Cardiomyopathies , Caspase 3 , Collagen , Depression , Doxorubicin , Echocardiography , Fibrosis , Free Radicals , Gene Expression , Heart Failure , Heart Ventricles , Hypertrophy, Left Ventricular , Injections, Intraperitoneal , Interleukin-6 , Interleukins , Models, Animal , Natriuretic Peptide, Brain , Necrosis , Rats, Sprague-Dawley , Troponin I , Up-Regulation , Ventricular Remodeling
9.
Yonsei Medical Journal ; : 570-580, 2017.
Article in English | WPRIM | ID: wpr-188812

ABSTRACT

PURPOSE: Pulmonary arterial hypertension (PAH) is a fatal disease which is characterized by an increase in pulmonary arterial pressure leading to increases in right ventricular afterload. Human umbilical cord blood derived-mesenchymal stem cells (hUCB-MSCs) administered via the jugular vein have been previously shown to improve PAH by reversal treatment. However, the effect of low dosage and transfusion timing of hUCB-MSCs on PAH has not yet been clearly established. Obviously, low dosage treatment can lead to a reduction in costs. This is the first study on early transfusion effect. MATERIALS AND METHODS: This study was divided into two parts. The first part is an investigation of dose-dependent effect. hUCB-MSCs were administered into 3 groups of rats (UA: 3×10⁶ cells, UB: 1.5×10⁶ cells, UC: 3×10⁵ cells) via the external jugular vein at week 1 after monocrotaline (MCT) injection. The second part is a search for optimal treatment timing in 3×10⁵ cells dose of hUCB-MSCs administered at day 1 for UD group (low dose of hUCB-MSCs at day 1), at day 1 and week 1 for the UE group (dual transfusion of low dose of hUCB-MSCs at day 1 and week 1) and at 1 week for the UF group (reversal treatment of low dose hUCB-MSC at week 1) after MCT injection. RESULTS: The administration of 3×10⁵ hUCB-MSCs was as effective as the 3×10⁶ dose in decreasing mean right ventricle (RV) pressure and pulmonary pathological changes. Early treatment with hUCB-MSCs improved mean RV pressure, pulmonary pathological changes and heart collagen 3 protein expression levels in PAH. CONCLUSION: Low-dose early treatment of hUCB-MSCs is as effective as a high dose treatment of hUCB-MSCs in improving PAH although dual or reversal treatment is still more effective.


Subject(s)
Animals , Humans , Rats , Arterial Pressure , Collagen , Fetal Blood , Heart , Heart Ventricles , Hypertension , Hypertension, Pulmonary , Jugular Veins , Mesenchymal Stem Cells , Monocrotaline , Stem Cells
10.
Korean Journal of Pediatrics ; : 262-270, 2016.
Article in English | WPRIM | ID: wpr-107692

ABSTRACT

PURPOSE: Pulmonary arterial hypertension (PAH) leads to right ventricular failure (RVF) as well as an increase in pulmonary vascular resistance. Our purpose was to study the effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline (MCT)-induced RVF. METHODS: The rats were distributed randomly into 3 groups. The control (C) group, the monocrotaline (M) group (MCT 60 mg/kg) and the sildenafil (S) group (MCT 60 mg/kg+ sildenafil 30 mg/kg/day for 28 days). Masson Trichrome staining was used for heart tissues. Western blot analysis and immunohistochemical staining were performed. RESULTS: The mean right ventricular pressure (RVP) was significantly lower in the S group at weeks 1, 2, and 4. The number of intra-acinar arteries and the medial wall thickness of the pulmonary arterioles significantly lessened in the S group at week 4. The collagen content also decreased in heart tissues in the S group at week 4. Protein expression levels of B-cell lymphoma-2 (Bcl-2)-associated X, caspase-3, Bcl-2, interleukin (IL)-6, matrix metalloproteinase (MMP)-2, endothelial nitric oxide synthase (eNOS), endothelin (ET)-1 and ET receptor A (ERA) in lung tissues greatly decreased in the S group at week 4 according to immunohistochemical staining. According to Western blotting, protein expression levels of troponin I, brain natriuretic peptide, caspase-3, Bcl-2, tumor necrosis factor-α, IL-6, MMP-2, eNOS, ET-1, and ERA in heart tissues greatly diminished in the S group at week 4. CONCLUSION: Sildenafil alleviated right ventricular hypertrophy and mean RVP. These data suggest that sildenafil improves right ventricular function.


Subject(s)
Animals , Rats , Arteries , Arterioles , B-Lymphocytes , Blotting, Western , Caspase 3 , Collagen , Endothelins , Gene Expression , Heart , Hypertension , Hypertension, Pulmonary , Hypertrophy, Right Ventricular , Interleukin-6 , Interleukins , Lung , Models, Animal , Monocrotaline , Natriuretic Peptide, Brain , Necrosis , Nitric Oxide Synthase Type III , Sildenafil Citrate , Troponin I , Vascular Resistance , Ventricular Function, Right , Ventricular Pressure , Ventricular Remodeling
11.
Anatomy & Cell Biology ; : 7-14, 2016.
Article in English | WPRIM | ID: wpr-127244

ABSTRACT

Pulmonary arterial hypertension (PAH) is a severe pulmonary vascular disease characterized by sustained increase in the pulmonary arterial pressure and excessive thickening and remodeling of the distal small pulmonary arteries. During disease progression, structural remodeling of the right ventricular (RV) impairs pump function, creates pro-arrhythmic substrates and triggers for arrhythmias. Notably, RV failure and lethal arrhythmias are major contributors to cardiac death in PAH that are not directly addressed by currently available therapies. Ranolazine (RAN) is an anti-anginal, anti-ischemic drug that has cardioprotective effects of heart dysfunction. RAN also has anti-arrhythmic effects due to inhibition of the late sodium current in cardiomyocytes. Therefore, we hypothesized that RAN could reduce the mal-adaptive structural remodeling of the RV, and prevent triggered ventricular arrhythmias in the monocrotaline-induced rat model of PAH. RAN reduced ventricular hypertrophy, reduced levels of B-type natriuretic peptide, and decreased the expression of fibrosis. In addition, RAN prevented cardiovascular death in rat model of PAH. These results support the notion that RAN can improve the functional properties of the RV, highlighting its potential benefits in the setting of heart impairment.


Subject(s)
Animals , Rats , Arrhythmias, Cardiac , Arterial Pressure , Death , Disease Progression , Fibrosis , Heart , Heart Ventricles , Hypertension , Hypertrophy , Models, Animal , Myocytes, Cardiac , Natriuretic Peptide, Brain , Pulmonary Artery , Sodium , Vascular Diseases , Ranolazine
12.
Korean Circulation Journal ; : 79-92, 2016.
Article in English | WPRIM | ID: wpr-22787

ABSTRACT

BACKGROUND AND OBJECTIVES: Failure of vascular smooth muscle apoptosis and inflammatory response in pulmonary arterial hypertension (PAH) is a current research focus. The goals of this study were to determine changes in select gene expressions in monocrotaline (MCT)-induced PAH rat models after human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) transfusion. MATERIALS AND METHODS: The rats were separated into 3 groups i.e., control group (C group), M group (MCT 60 mg/kg), and U group (hUCB-MSCs transfusion) a week after MCT injection. RESULTS: TUNEL assay showed that the U group had significantly lowered positive apoptotic cells in the lung tissues, as compared with the M group. mRNA of caspase-3, B cell leukemia/lymphoma (Bcl)-2, interleukin (IL)-6, tumor necrosis factor (TNF)-alpha and vascular endothelial growth factor (VEGF) in the lung tissues were greatly reduced at week 4 in the U group. Immunohistochemical staining of the lung tissues also demonstrated a similar pattern, with the exception of IL-6. The protein expression of caspase-3, Bcl-2 VEGF, IL-6, TNF-alpha and brain natriuretic peptide in the heart tissues were significantly lower in the U group, as compared with the M group at week 2. Furthermore, the protein expression of VEGF, IL-6 and BNP in the heart tissues were significantly lower in the U group at week 4. Collagen content in the heart tissues was significantly lower in the U group, as compared with M group at weeks 2 and 4, respectively. CONCLUSION: hUCB-MSCs could prevent inflammation, apoptosis and remodeling in MCT-induced PAH rat models.


Subject(s)
Animals , Humans , Rats , Apoptosis , Caspase 3 , Collagen , Fetal Blood , Gene Expression , Heart , Hypertension , Hypertension, Pulmonary , In Situ Nick-End Labeling , Inflammation , Interleukin-6 , Interleukins , Lung , Mesenchymal Stem Cells , Models, Animal , Monocrotaline , Muscle, Smooth, Vascular , Natriuretic Peptide, Brain , RNA, Messenger , Stem Cells , Tumor Necrosis Factor-alpha , Umbilical Cord , Vascular Endothelial Growth Factor A
13.
The Ewha Medical Journal ; : 45-50, 2016.
Article in English | WPRIM | ID: wpr-15208

ABSTRACT

OBJECTIVES: Spontaneously hypertensive rats (SHR) are frequently used as rat models of essential hypertension. The mechanism for the development of hypertension is complicated and it is unknown. The renin-angiotensin system (RAS) plays a key role in the control of blood pressure. Microarrays are a powerful tool for studying genetics. The purpose of this study was to investigate changes of gene expression in the heart tissues of SHR after losartan treatment to provide basic data that is useful in the early diagnosis of hypertension and gene treatment. METHODS: Rats were divided into three groups: the control (C) group; the hypertension (H) group (SHR), and the losartan (L) group; treated with losartan (10 mg/kg/day) in SHR. Rats were sacrificed at week 5 and microarray analysis was performed. RESULTS: 102 gene expressions including the genes associated with cell proliferation such as Raf1, Uchl1, Btla, Spock1 were increased. The other 139 gene expressions, including the genes related to the regulation of metabolism such as TFIID, Auf1, Bmp, Hub, Taf51 showed decreases in gene expression. A total of 31 genes were differentially expressed in the L group compared to the H group. Of these, 16 genes including the genes associated with macromolecule metabolism such as MGC105766, Ppp1r1a, Rpl3l showed increased expression. The other 15 genes including the genes associated with primary metabolism such as Mcpt4, Ngn3, Tdo, Ak2 Hyal2 showed decreased expressions. CONCLUSION: According to microarray analysis, there was significant gene expression change in SHR compared with normal rats as well as significant gene expression changes after losartan treatment in SHR.


Subject(s)
Animals , Rats , Blood Pressure , Cell Proliferation , Early Diagnosis , Gene Expression , Genetics , Heart , Hypertension , Losartan , Metabolism , Microarray Analysis , Models, Animal , Rats, Inbred SHR , Renin-Angiotensin System , Transcription Factor TFIID
14.
The Korean Journal of Physiology and Pharmacology ; : 35-42, 2015.
Article in English | WPRIM | ID: wpr-727828

ABSTRACT

In cardiovascular disorders, understanding of endothelial cell (EC) function is essential to elucidate the disease mechanism. Although the mouse model has many advantages for in vivo and in vitro research, efficient procedures for the isolation and propagation of primary mouse EC have been problematic. We describe a high yield process for isolation and in vitro culture of primary EC from mouse arteries (aorta, braches of superior mesenteric artery, and cerebral arteries from the circle of Willis). Mouse arteries were carefully dissected without damage under a light microscope, and small pieces of the vessels were transferred on/in a Matrigel matrix enriched with endothelial growth supplement. Primary cells that proliferated in Matrigel were propagated in advanced DMEM with fetal calf serum or platelet-derived serum, EC growth supplement, and heparin. To improve the purity of the cell culture, we applied shearing stress and anti-fibroblast antibody. EC were characterized by a monolayer cobble stone appearance, positive staining with acetylated low density lipoprotein labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate, RT-PCR using primers for von-Willebrand factor, and determination of the protein level endothelial nitric oxide synthase. Our simple, efficient method would facilitate in vitro functional investigations of EC from mouse vessels.


Subject(s)
Animals , Mice , Arteries , Cell Culture Techniques , Cerebral Arteries , Endothelial Cells , Heparin , Lipoproteins , Mesenteric Artery, Superior , Nitric Oxide Synthase Type III
15.
Journal of Korean Medical Science ; : 576-585, 2015.
Article in English | WPRIM | ID: wpr-99850

ABSTRACT

Pulmonary arterial hypertension (PAH) causes right ventricular failure due to a gradual increase in pulmonary vascular resistance. The purposes of this study were to confirm the engraftment of human umbilical cord blood-mesenchymal stem cells (hUCB-MSCs) placed in the correct place in the lung and research on changes of hemodynamics, pulmonary pathology, immunomodulation and several gene expressions in monocrotaline (MCT)-induced PAH rat models after hUCB-MSCs transfusion. The rats were grouped as follows: the control (C) group; the M group (MCT 60 mg/kg); the U group (hUCB-MSCs transfusion). They received transfusions via the external jugular vein a week after MCT injection. The mean right ventricular pressure (RVP) was significantly reduced in the U group after the 2 week. The indicators of RV hypertrophy were significantly reduced in the U group at week 4. Reduced medial wall thickness in the pulmonary arteriole was noted in the U group at week 4. Reduced number of intra-acinar muscular pulmonary arteries was observed in the U group after 2 week. Protein expressions such as endothelin (ET)-1, endothelin receptor A (ERA), endothelial nitric oxide synthase (eNOS) and matrix metalloproteinase (MMP)-2 significantly decreased at week 4. The decreased levels of ERA, eNOS and MMP-2 immunoreactivity were noted by immnohistochemical staining. After hUCB-MSCs were administered, there were the improvement of RVH and mean RVP. Reductions in several protein expressions and immunomodulation were also detected. It is suggested that hUCB-MSCs may be a promising therapeutic option for PAH.


Subject(s)
Animals , Humans , Male , Rats , Cytokines/metabolism , Disease Models, Animal , Endothelin-1/metabolism , Fetal Blood/cytology , Gene Expression Regulation/drug effects , Hemodynamics , Hypertension, Pulmonary/chemically induced , Hypertrophy, Right Ventricular/physiopathology , Immunohistochemistry , Lung/metabolism , Matrix Metalloproteinase 2/metabolism , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Monocrotaline/toxicity , Nitric Oxide Synthase Type III/metabolism , Pulmonary Artery/pathology , Rats, Sprague-Dawley , Receptor, Endothelin A/metabolism
16.
Anatomy & Cell Biology ; : 217-226, 2014.
Article in English | WPRIM | ID: wpr-62486

ABSTRACT

Pulmonary arterial hypertension (PAH) is associated with structural alterations of lung vasculature. PAH is still a devastating disease needing an aggressive therapeutic approach. Despite the therapeutic potential of human umbilical cord mesenchymal stem cells (MSCs), the molecular parameters to define the stemness remain largely unknown. Using high-density oligonucleotide microarrays, the differential gene expression profiles between a fraction of mononuclear cells of human umbilical cord blood (UCB) and its MSC subpopulation were obtained. Of particular interest was a subset of 46 genes preferentially expressed at 7-fold or higher in the group treated with human UCB-MSCs. This subset contained numerous genes involved in the inflammatory response, immune response, lipid metabolism, cell adhesion, cell migration, cell differentiation, apoptosis, cell growth, transport, cell proliferation, transcription, and signal transduction. Our results provide a foundation for a more reproducible and reliable quality control using genotypic analysis for the definition of human UCB-MSCs. Therefore, our results will provide a basis for studies on molecular mechanisms controlling the core properties of human MSCs.


Subject(s)
Animals , Humans , Rats , Apoptosis , Cell Adhesion , Cell Differentiation , Cell Movement , Cell Proliferation , Fetal Blood , Hypertension , Hypertension, Pulmonary , Lipid Metabolism , Lung , Mesenchymal Stem Cells , Microarray Analysis , Monocrotaline , Oligonucleotide Array Sequence Analysis , Pulmonary Artery , Quality Control , Signal Transduction , Transcriptome , Umbilical Cord
17.
Obstetrics & Gynecology Science ; : 544-548, 2014.
Article in English | WPRIM | ID: wpr-17022

ABSTRACT

Choriocarcinoma is a highly invasive and metastatic neoplasm which arises in women of reproductive age. It can be either gestational or nongestational in origin, but the latter form is very rare. Choriocarcinoma is characterized by the production of human chorionic gonadotropin. It can metastasize to distant organs such as lung, brain, liver, kidney, and vagina in the early stages of disease, but retroperitoneal metastasis is extremely rare. Treatment options include surgical intervention and chemotherapy. We present the case of a 25-year-old nulliparous woman who presented to our department with a retroperitoneal mass and negative urine human chorionic gonadotropin test, who was immunohistopathologically diagnosed with nongestational choriocarcinoma. The patient responded well to surgery and multi-drug chemotherapy.


Subject(s)
Adult , Female , Humans , Pregnancy , Brain , Choriocarcinoma , Chorionic Gonadotropin , Drug Therapy , Kidney , Liver , Lung , Neoplasm Metastasis , Vagina
18.
Korean Circulation Journal ; : 97-104, 2014.
Article in English | WPRIM | ID: wpr-15685

ABSTRACT

BACKGROUND AND OBJECTIVES: Vascular wall remodeling in pulmonary hypertension can be caused by an aberration in the normal balance between proliferation and apoptosis of endothelial cell in the pulmonary artery. The objective of this study was to evaluate the effect of bosentan on apoptosis in monocrotaline (MCT)-induced pulmonary hypertension. MATERIALS AND METHODS: Sprague-Dawley rats were divided into three groups: control (C) group, M group (MCT 60 mg/kg) and B group (MCT 60 mg/kg plus bosentan 20 mg/day orally). Gene expressions of Bcl (B cell leukemia/lymphoma)-2, caspase-3, complement component (C)-6, vascular endothelial growth factor (VEGF), interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-alpha) were analyzed by real time polymerase chain reaction and western blot analysis. RESULTS: The messenger ribonucleic acid (mRNA) expressions of caspase-3 and VEGF were significantly increased in the M group compared with the C group, and significantly decreased in the B group compared with the M group in week 4. mRNA expression of IL-6 was significantly decreased in weeks 1, 2, and 4 in the B group compared with the M group. mRNA expression of TNF-alpha was significantly decreased on day 5 and in weeks 1 and 2 in the B group compared with the M group. CONCLUSION: Bosentan may have potential for preventing apoptosis and inflammation.


Subject(s)
Animals , Rats , Apoptosis , Blotting, Western , Caspase 3 , Complement System Proteins , Endothelial Cells , Gene Expression , Hypertension, Pulmonary , Inflammation , Interleukin-6 , Interleukins , Monocrotaline , Pulmonary Artery , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , RNA , RNA, Messenger , Tumor Necrosis Factor-alpha , Vascular Endothelial Growth Factor A
19.
Korean Journal of Pediatrics ; : 116-124, 2013.
Article in English | WPRIM | ID: wpr-208955

ABSTRACT

PURPOSE: Tumor necrosis factor (TNF)-alpha is thought to contribute to pulmonary hypertension. We aimed to investigate the effect of infliximab (TNF-alpha antagonist) treatment on pathologic findings and gene expression in a monocrotaline-induced pulmonary hypertension rat model. METHODS: Six-week-old male Sprague-Dawley rats were allocated to 3 groups: control (C), single subcutaneous injection of normal saline (0.1 mL/kg); monocrotaline (M), single subcutaneous injection of monocrotaline (60 mg/kg); and monocrotaline + infliximab (M+I), single subcutaneous injection of monocrotaline plus single subcutaneous injection of infliximab (5 mg/kg). The rats were sacrificed after 1, 5, 7, 14, or 28 days. We examined changes in pathology and gene expression levels of TNF-alpha, endothelin-1 (ET-1), endothelin receptor A (ERA), endothelial nitric oxide synthase (eNOS), matrix metalloproteinase (MMP)2, and tissue inhibitor of matrix metalloproteinase (TIMP). RESULTS: The increase in medial wall thickness of the pulmonary arteriole in the M+I group was significantly lower than that in the M group on day 7 after infliximab treatment (P<0.05). The number of intra-acinar muscular arteries in the M+I group was lower than that in the M group on days 14 and 28 (P<0.05). Expression levels of TNF-alpha, ET-1, ERA, and MMP2 were significantly lower in the M+I group than in the M group on day 5, whereas eNOS and TIMP expressions were late in the M group (day 28). CONCLUSION: Infliximab administration induced early changes in pathological findings and expression levels of TNF-alpha, and MMP2 in a monocrotaline-induced pulmonary hypertension rat model.


Subject(s)
Animals , Humans , Male , Rats , Antibodies, Monoclonal , Arteries , Arterioles , Endothelin-1 , Gene Expression , Hypertension, Pulmonary , Injections, Subcutaneous , Monocrotaline , Nitric Oxide Synthase Type III , Rats, Sprague-Dawley , Receptors, Endothelin , Tumor Necrosis Factor-alpha , Infliximab
20.
Journal of the Korean Society of Hypertension ; : 105-116, 2012.
Article in Korean | WPRIM | ID: wpr-51847

ABSTRACT

BACKGROUND: Interfering RNA (iRNA) represents a recent breakthrough in effective blocking of the target genes in mammalian cells. Angiotensin-converting enzyme (ACE) has been shown to play an important role in the pathogenesis of hypertension. The purposes of this study were to investigate the effects on blood pressure, myocardial hypertrophy and gene expressions of iRNA targeting ACE. METHODS: Twelve week old male Wistar-Kyoto rats were grouped as follows: control group (C group), spontaneously hypertensive rat (SHR) group (H group), and ACE-iRNA group (A group) in which SHR was treated with recombinant lentiviral vectors carrying small hairpin RNA targeting ACE. Reverse transcription-polymerase chain reaction and western blot analysis of ACE, endothelin (ET)-1, angiotensin (AT) II receptor type 1A, neutrophil cytosolic factor, caspase 3, Bax, and Bcl-2 were performed in the heart tissues. Serum AT, ACE, and high sensitive-C reactive protein were estimated. RESULTS: Systolic blood pressure was significantly decreased in the A group compared with the H group in weeks 3 and 5. Serum AT level was significantly lower on day 1, weeks 3 and 5 after ACE-iRNA treatment. ACE protein contents were significantly lower after ACE-iRNA treatment in week 5. ET-1 and Bcl-2 protein contents were significantly lower after ACE-iRNA treatment in weeks 3 and 5. Bax protein contents were significantly lower after ACE-iRNA treatment in week 3. CONCLUSIONS: Recombinant lentiviral vectors carrying shRNA targeting ACE prevented hypertension. Serum AT and gene expressions such as ACE, ET-1, Bax, and Bcl-2 were significantly decreased after ACE-iRNA treatment.


Subject(s)
Animals , Humans , Male , Rats , Angiotensins , bcl-2-Associated X Protein , Blood Pressure , Blotting, Western , Caspase 3 , Cytosol , Endothelins , Gene Expression , Heart , Hypertension , Hypertrophy , Lentivirus , Lifting , Neutrophils , Rats, Inbred SHR , RNA , RNA Interference , RNA, Small Interfering
SELECTION OF CITATIONS
SEARCH DETAIL